BIRZEIT UNIVERSITY

Electrical and Computer Engineering Department

Network Analysis I, ENEE2304
Name:
Second Makeup Exam
2018-05-13
No.:
Sec:

Q1) For all the time prior to zero, the switch is at position (a), at $\mathrm{t}=0$ the switched was moved to position (b).
a) Find $\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)$and $\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)$? (5 marks)
b) Show that type of damping is under damped? (5 marks)
c) For $t \geq 0$ find $i_{A}(t)$? (15 marks)

$$
\begin{gathered}
V_{A}\left(0^{-}\right)=24 * 5=120 \mathrm{~V} \\
V_{L}\left(0^{+}\right)=V_{c}\left(0^{-}\right)=V_{A}\left(0^{-}\right)+0.2 V_{A}\left(0^{-}\right)=144 \mathrm{~V} \\
i_{L}\left(0^{+}\right)=i_{L}(\infty)=i_{L}\left(0^{-}\right)=\frac{24}{20}=1.2 \mathrm{~A} \\
V_{c}(\infty)=0 V
\end{gathered}
$$

d) Show that type of damping is under damped? (10 marks)

$$
\begin{gathered}
\alpha=\frac{1}{2 R C}=\frac{1}{2(20)\left(5 * 10^{-5}\right)}=500 \\
\omega=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{0.02 * 5 * 10^{-5}}}=1000 \\
\omega_{d}=\sqrt{\omega_{o}^{2}-\alpha_{o}^{2}}=\sqrt{10^{6}-25 * 10^{4}}=1118
\end{gathered}
$$

e) For $t \geq 0$ find $\mathrm{i}_{\mathrm{A}}(\mathrm{t})$? (15 marks)

$$
i_{A}(t)=i_{L}(\infty)+\left(B_{1} \cos \omega_{d} t+B_{2} \sin { }_{d} t\right) e^{-\alpha t}
$$

$$
\begin{gathered}
=1.2+\left(B_{1} \cos 1118 t+B_{2} \sin 1118 t\right) e^{-500} \\
i_{A}(0)=i_{L}(0)=i_{L}(\infty)+B_{1}=1.2+B_{1}=1.2 \\
B_{1}=0 \\
d i_{L} / d t(0)=\frac{V_{L}\left(0^{+}\right)}{L}=-\alpha B_{1}+\omega_{d} B_{2}= \\
=\left(-0+1118 B_{2}\right)=\frac{144}{0.2} \\
B_{2}=0.644 \\
=1.2+0.644 \sin (96.8 t) e^{-500 t} \mathrm{~A}
\end{gathered}
$$

Q2) Find the load Z_{L} that absorbs the maximum power? (15 marks)

$$
\begin{gathered}
Z_{t h}=\frac{(-5 j+10 j) *(10+6 j)}{(-5 j+10 j)+(10+6 j)}=1.13+3.76 i=3.92 \angle 73.27 \Omega \\
Z_{L}=Z_{t h}^{*}=1.13-3.76 i=3.92 \angle-73.27 \Omega
\end{gathered}
$$

Q3) a) Plot the phasor diagram of voltage and current in the capacitor (5 marks)
b) Calculate the average power that absorbs by the resistor 10Ω. (5 marks)
c) Find the input voltage $V_{\text {in }}$ in phasor and its power factor. (15 marks)
d) Calculate the reactive power that absorbs by the inductor 0.5Ω.(5 marks)

a) Plot the phasor diagram of voltage and current in the capacitor (5 marks)

$$
\begin{gathered}
I_{c}=\frac{240 \angle 0}{10-100 j}=0.24+j 2.38 A=2.4 \angle 84 A_{r m s} \\
V_{c}=-100 j *(0.24+j 2.38)=238-j 23.8=239 \angle 5.7 V_{r m s}
\end{gathered}
$$

b) Calculate the average power that absorbs by the resistor 10Ω. (5 marks)

$$
P_{a v}=I_{c}^{2} R=10 * 2.4^{2}=57.6 \mathrm{~W}
$$

c) Find the input voltage $V_{\text {in }}$ in phasor and its power factor. (15 marks)

$$
\begin{gathered}
I_{T}=I_{L}+I_{c} \\
S_{L}=2 k \angle \cos ^{-1} 0.6=2 k \angle 53 \\
I_{L}^{*}=\frac{S_{L}}{240 \angle 0}=\frac{2 k \angle 53}{240 \angle 0}=\frac{25}{3} \angle 53=8.33 \angle 53=5+j 6.67 \\
I_{L}=5-j 6.67=8.33 \angle-53 \\
I_{T}=5-j 6.67+0.24+j 2.38=5.24-j 4.29 A_{r m s}=6.77 \angle-39.3 A_{r m s} \\
V_{\text {in }}=I_{T}(1+0.5 j)+240 \angle 0=247.39-j 1.67=247.58 \angle-12.7 V_{r m s} \\
P F=\cos (-12.7--53)=0.76 \text { Laging }
\end{gathered}
$$

d) Calculate the reactive power that absorbs by the inductor 0.5Ω. 5 marks)

$$
Q_{L}=\omega L I_{r m s}^{2}=0.5 *(6.77)^{2}=22.9 \mathrm{VAR}
$$

Q4) a) Find i_{o} (t)? (25 marks)
b) Find the voltage source power factor?. (5 marks)

$$
\begin{gathered}
I_{S}=2 \sin (100 t)=2 \angle-90 \\
-2 \angle-90+\frac{V_{x}}{2}+\frac{V_{x}}{2 j}+\frac{V_{x}}{100}+\frac{V_{x}+5 \angle 0}{-4 j}=0 \\
(0.51-0.25 j) V_{x}=-3.25 j \\
I_{o}=\frac{V_{x}+5 \angle 0}{-4 j}=\frac{-5.14-2.52 j+5}{-4 j}=5.72 \angle-153 \mathrm{~V} \\
I_{x}=2.27 \sin (100 t+55.8)
\end{gathered}
$$

b) Find the voltage source power factor?. (5 marks)

$$
I_{s}=1.28+1.88 j+\frac{-5.14-2.52 j}{100}=1.31+1.83 j=2.25 \angle 54.4 A
$$

$$
P F=\cos (0-54.4)=0.58 \text { Leading }
$$

